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Edge overload breakdown in evolving networks
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We investigate growing networks based on Basataad Albert’s algorithm for generating scale-free net-
works, but with edges sensitive to overload breakdown. The load is defined through edge betweenness cen-
trality. We focus on the situation where the average number of connections per vertex is, like the number of
vertices, linearly increasing in time. After an initial stage of growth, the network undergoes avalanching
breakdowns to a fragmented state from which it never recovers. This breakdown is much less violent if the
growth is by random rather than by preferential attachniastdefines the Barabiaand Albert model We
briefly discuss the case where the average number of connections per vertex is constant. In this case no
breakdown avalanches occur. Implications to the growth of real-world communication networks are discussed.
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|. INTRODUCTION A. The Barabasi-Albert model of scale-free networks

) The standard model for evolving networks with an emerg-

Large sparse networks are the underlying structure fofng power-law degree distribution is the BarabAlbert
transportation or communication systems, both man madgodel. In this model, starting from, vertices and no edges,
(like computer network$l,2] or power gridg3]) or natural  one vertex withm edges is attached iteratively. The crucial
(like neural networks[4] or biochemical networkg5]). ingredient is a biased selection of what vertex to attach to,
These networks display both randomness and some selfre so called “preferential attachment:” In the process of
induced structure influencing the flow of transport and ro-adding edges, the probability, for a new vertexv to be
bustness against congestion or breakdown in the networlattached tai is given by[14]
The most well-studied such structure among real-world com-

munication networks is a highly skewed distribution of the P — ky+1 &
degree(the number of neighbors of a verdgx,2,6). u '
Avalanching breakdown in networks where the edges or ng (kwt1)

vertices are sensitive to overload is a serious threat to real-

world networks. A recent example being the blackout of 11

US states and two Canadian provinces on 10th August 19.9\9here k, is the degree of the vertex To understand the
[7]. Recently the ovelrload breakdpwn problem for Vertices Ngffact of preferential attachment, we will also investigate net-
growing networks W|th.an emerging power-law degr.ee dls'Works grown with an unbiased random attachment of verti-
tribution has been studid@]. In the present paper we inves- ¢oq “\yithout the preferential attachment the networks are
tigate thg overload br_e_akdown proble_m when edgather known to have an exponential tail of the degree distribution
than verticesare sensitive to overloading. We use the Stan{lO]. The timet is measured as the total number of added

dard model for suph netwc_)rks—the Barabglbert (.BA) edges, which is different by facton from Refs.[9,10] where
model[9,10], but with a maximum load capacity assigned 10+ is defined as the number of added vertices.

each edge. The load is defined by means of the betweenness; op,14 e noted that in very large communication net-
centrality—a centrality measure for communication and s such as the Internet, the users can process information
transport flow in a networki1]. The procedure enablles.us 0 about only a subset of the whole network. How this affects
study overload breakdown triggered by the redistribution,e gvnamics of network formation is investigated in Ref.

(and |ncrea§)eof load in a growing network. This is in con- 15]. In the present work we neglect such effects and assume
trast to earlier models of cascading breakdown phenomen near preferential attachment

all dealing with vertex breakdown, which have taken a fixed
network as their starting poifi2,13.

B. Load and capacity

To assess the load on the vertices of a communication
network, or any network where contact between two vertices

We represent networks as undirected and unweightei$ established through a path in the network, a common
graphsG=(V,E), whereV is the set of vertices, arflis the  choice is the betweenness centra|ity], which often is seen
set of unweighted edgesinordered pairs of verticesMul- ~ as a vertex quantity but has a natural extension to edges
tiple edges between the same pair of vertices are not allowed: E [16]:

II. DEFINITIONS
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wherea,,(e) is the number of geodesics betweemndw  tionality. In a functional network a large portion of the ver-
that containse, and o, is the total number of geodesics tices should have the possibility to connect to each other. In
betweenv andw. Cg(e) is thus the number of geodesics percolation and attack vulnerability studies of random net-
between pairs of vertices passiagif more than one geode- works one often useSto define the system as “percolated”
sics exists between andw the fraction of vertices contain- (or functioning, when the size of the largest connected sub-
ing e contributes tce’s betweennesg21]. graphSscales ad [1,22]. One of the characteristic features

In Ref. [8] (see also Ref[17]) the use of betweenness of the BA model networks, as well as many real-world com-
centrality as a load measure is given thorough motivationsnunication networks, is a less than algebraically increasing
These arguments are readily generalized to the case of edgagerage geodesic lengthAs the average geodesic length is
sensitive to overloading: Suppose thats the set of pairs of infinite when the network is disconnectéas could be the
vertices with established communications through shortestase when an overload breakdown has occiirves study
paths at a given instafit8]. Then let\ (e) denote the load of the average inverse geodesic lenf2B]:
ee E defined as the number of geodesics that contains
Then we assume the effective load to be the average |—1E< 1 >E 1 DD 1 (5)

d( N(N—1) j=v we W} d(er)'

1
(NeNa=rgr X, Me), 3
Aeh which has a finite value even for the disconnected graph if
where Q is an ensemble oh. To proceed, we restric@ ~ ©ne defines H(v,w)=0 in the case that no path connects
according to andw. To monitor the fragmentation of the network we will
also measure the number of connected subgraphs
Q={A:|A|=AN(N-1)}, 4

where A is constant with respect thl. This is to be inter- Ill. SIMULATION RESULTS
preted that an element @1 is a set ofAN(N—1) pairs of E lativel Im. tvoical lified in Fi
distinct vertices chosen uniformly at random, and thus cor- 0' f€fatively smaim, typical runs aré exempiified in ig.

responds to the case where the number of established corh: FOr Poth random and preferential attachmes}, reaches

munication routes ending at a specific vertex in average ind critical time whereafter the network starts to break down

creases With\. This case can, for example, be expected inand it eventually S) reaches a steady state value. The break-

the early days of the Internet where the launches of new sitedoWn develops differently in the two cases: For the random
made the users browse a larger average number of sites. TRgachment ?he preakdown is relatively slow a_nd the steady
case where the user on an average connects to tate value is high compar_ed to the preferential attachment
N-independent number of others is discussed in the Apperf2S€ Where large successive avalanches fragment the net-
dix. The largest approximation, when using the betweennes¥ork. The other two quantities reflect the same behavior:

. . ey . . . . 71
as a load measure, is probably that routing protocols of, e.g//hile the initial vertices get joined into the network,

the Internet has implicitly implemented load balancing/Ncreases to an early maxi[nlum. After the decrease corre-
[18-20. sponding to the increase bfl ~* decreases rapidly when the

To introduce overloading to the dynamics we assign d'€twork becomes fragmented.shows the jagged shape, as
capacity, or maximum valua™(e) to the load, doing the expected, corrglated_wn_h t_hat QS). As seen in _F|gs. 6:))
same for each edge, and say that the ezligeoverloaded if and 1b), thg discontinuity inL (in the preferential attach-
A"(e) <(\(€)),. From the definition of) we can see that ment casg is less pronounced than that {8), so a small
our situation corresponds to having a maximum capacity offumber of overloaded edges can be enough to cause a large
the betweenness centrality of the edges so that an edge qigcrease ij}._The reason for this behavior is that bridges
overloaded ifCg(€)>CT® (where CT® is constant If an (smgle edges interconnecting connected subgr)abhs'e a
edge is overloaded it is simply removed from the graph, an&“gh betweenness and thus are prone to overloading. The

the betweenness recalculated. Then if another edge becom'%lémber of connected subgraphs behave qualitatively in the

overloaded it is removed, and so on. If more than one edge igame way for random and preferential attachment. For other

overloaded at a time, we choose the one to be removed rafdnS Of the algorithm the breakdown can qualitatively be

Iv. Multiol k - fi t fi escribed as above. The averaged quantities vary relatively
?Srrgaidovl:/nlg\?all)a??hg?wns during one time step define a]ittle, for example the peak time fqiS) has a standard de-

viation of ~3%.
The corresponding overload case for vertices studied in
Ref. [8] shows a similar time development with a period of
To measure the network functionality we consider threeincipient scale-freeness, an intermediate regime of break-
guantities—the number of edgés inverse geodesic length down and recoveryalthough the period of recovery is not as
| -1, and the size of the largest connected subg@tor the large for edges as for vertioesand a final breakdown to a
original BA model the number of edges increases linearly atarget state of disconnected clusters. One major difference
L(t)=t (i.e., one edge is added in unit tim®ut if an over-  between overload breakdown for vertices and edges is that
load breakdown occurs in the systeimdecreases, making it the difference between random and preferential attachment is
a suitable, simplest possible measure of the network fundarger for edge overloading—edge robustness benefits more

C. Quantities for measuring network functionality
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than vertex robustness from the geometry arising from rankanches, the largest connected component remains of the

dom attachment. same sizes=Cg*+ 1. WhenS=Cg®+ 1 the next edge at-
Next we investigate then dependence. As seen in Fig. 2 taching a new vertex will hav€g(e) = Cg*+ 1, and thus be

the system becomes more and more robust wharcreases. overloaded. In most cases this will lead to removal of the

This is of course expected since with a higher average degreaewly added edge—otherwise another edge has to be over-

more edges share the load, so the maximal load can be elsaded at the same time, which is decreasingly likely with

pected to decrease. For high enoughthere are no ava- increasingm. In Fig. 2b) we can see one exception to this
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FIG. 2. Them dependence of the time development(8j—the average size of the largest connected subgraph®@th=500 and
my=2m, for (a) random attachment an@) preferential attachment.
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FIG. 3. Histograms(averaged over f0runs of degree. The .
parameter values ara=my/2=4 andCjy®=500. (a) shows histo- FIG. 4. Histogramgaveraged over forung of edge between-
grams for random attachment) shows histograms for random Ness Centrrglxlty. The parameter values are—as in Figm3-my/2
attachment. The gray line itb) is the function 38, * illustrating ~ =4 andCg™"=500. (a) shows histograms for random attachment,
the emerging power-law degree distribution at early times. (b) shows histograms for preferential attachment.

interpretation atm=6. Here(S) reache<Ci®+1 but starts  Of the P(k,) curve, whereas dt>1g0, the shape is exponen-

to decay slowly at arount=8000. As mentioned, the largest tial, ~ exp(~0.62k,), over five decades. To summarize, the
connected subgraph is expected to become more stabte asdegree distributions before and after 4® peak illustrate
increases. Whether there is amabove which(S)=CI®  the same behavior as the time evolution(8j—the break-
+1 for arbitrarily larget, above some,, is an open ques- down in the preferential attachment case is both faster and
tion. Comparing Figs. @) and 2b) shows that random at- Mmore restructuring than in the random attachment case.
tachment and preferential attachment have similar The betweenness distributions of Fig. 4 show a peak that
m-dependence behavior—the major difference being thamoves to higheCg, ast grows, until it reaches its maximal
preferential attachment has a much sharper increa¢g)of  value at the time of the drop i(S) and starts to decrease.
to be more precise then values that does not reacB  For random attachmeifFig. 4(a)] the shape of the distribu-
=Cg¥+1 for anyt, have a lower value in the largelimit.  tion looks qualitatively the same before and after the drop,
To get another angle of the mechanisms of the breakbut for preferential attachmeffig. 4(b)] P(Cg)=~0 for be-
downs for smalim, we consider histograms of degriegand  tweenness smaller than the peak. The vertex betweenness
betweennes€g(e). Figures 3 and 4 show these histogramsdistribution of the BA model is known to be strictly decreas-
both before and after the large drop(i8) for m=my/2=4  ing [17], which would imply that the lowEg tails in Fig. 4
and CE®=500. (In the random attachment case this drop(b) [and most likely in Fig. 4a) as well come from a spread
occurs attyy~1600, the corresponding value for preferen-of the size of the largest cluster, rather than from a tail in the
tial attachment igty,,;~2000) For random attachment the largest cluster’s betweenness distribution. Another feature of
difference between the histograms before and aftef8)e the betweenness histograms of Fig. 4 is the smaller peaks at
drop is distinctively smaller than for preferential attachment,low Cg for t<tg.,. These peaks correspond to a sharp peak
just as expected from Fig. 2. The random attachment curvesf the cluster size distribution just after tH&)-peak (see
in Fig. 3(@ have a degree distribution of truncated exponen+ig. 5. Such smaller clusters have small average degree with
tial form both at the earlier and later times. In Figaj8itis  manyk,=1 vertices, which all contributes to a peaksatf
exponential over two decades Bf{k,), but falls off faster the betweenness histograms. This explains the pedkgat
than exponentially for highét, . For preferential attachment ~45 in thet=5000 curve of Fig. &).
the degree distributions[Fig. 3b)] have a distinct The distribution of cluster sizes displayed in Fig. 5 gives
difference—at <tg,, there is an emergent power-law shapesome further insights: Fdr>t,, of the random attachment
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1 T T T T A T E IV. SUMMARY AND CONCLUSIONS

We have studied networks grown by the Basibalbert

= * . .
t = 1000 T model for networks with emergent scale-freeness and edges

¥
5 t =1500 + ] " ; ;
§< ] sensitive to overloading. Except for the preferential attach-
t =2000 T . ment defining the BA model, we also study an unbiased ran-
¥>< t =5000 X ] dom attachment. We focus on the case where the number of
- 5 ] established connections to other random vertices of the net-
x x work scales linearly with the number of vertices in the net-
ey « X ] work.
e We find that for intermediate values of (the number of
s edges added per vertexhe network grows like the BA
1 L O L model up to a point where it starts to break down. After a
(b) " ] number of avalanching breakdowns the network reaches a
. state characterized by many disconnected clusters from
] which a giant component never reemergaishough, in the
preferential attachment case, there will always be one single
largest cluster much larger than any ojhef the growth is

*
@107k
l 7 . - -
5 . ] by random attachment, the breakdown is less violent with
1072 " 3 smaller avalanches and no pronounced structural change. For
X “ ]
10—4 | | 1 X

0.1

+++ 4

+ 4+
|

3 large m the steady state at large times is characterized by a
L T constant largest cluster size.

0 100 200 300 400 In context of real-world communication networks one can
S

conclude that these would benefit from being grown by ran-
FIG. 5. The distribution of sizes of connected clusters at differ-dom rather than by preferential attachméand this differ-
ent times fom=mg/2=4, C§®=500, and(a) random attachment, €nce being larger for edge overload than for vertex overload
(b) preferential attachment. All curves represent averages over 1cstudied in Ref[8]). In the vertex overload case avalanches
runs. To overcome noise the=2000 histograms are binned fer ~ proceed until the network is fragmented into small clusters;
=75, each point being an average over a width of 10. in the edge overload problem there is still one large compo-
nent after the breakdowns, thus we infer that for real-world
curves it shows a bimodal distribution B¢s) is zero in the communication networks,. vertex overload_ing s a greater
interval 60ss<290. The preferential attachment curves, inthreat ”“?” gdge overloading, and congestlor] control in tele-
communication networkg24] and Internet routing protocols

contrast, have a long tail. Both the larg@eak for random ;
attachment and theg tail of preferents';f) attachment correLzo] should focus on balancing the vertex rather than edge

sponds to one single cluster. This is in striking contrast to théqad' Only if the capacity of verticegservers, etg.grows

vertex overload cagé] where the network looses the unique tsr']%ng:jca;gs\//;ﬁz[:é tg%g&z%xﬁpbfégn:z;?ggtags;’l ?;?éat for
largest component after the breakdown avalanchest As 9 P

evolves well beyond, the largest component peak de- avalanching breakdowns that is triggered by the change of

creases, and thus does not represent a giant comp(nnentIoad in a growing network.

largest cluster proportional td). The picture for both ran-

dom and preferential attachment is thus that the system does

not loose its unique largest cluster in a single breakdown ACKNOWLEDGMENTS

avalanche—an avalanche rather results in a few isolated ver- The author thanks Beom Jun Kim for discussions. This

tices or smaller clusters getting disconnected from the largestork was partially supported by the Swedish Natural Re-

connected component. . . search Council through Contract No. F 5102-659/2001.
The overall picture of the time evolution ¢8), L, and

| =1 (Fig. 1), them dependencéFig. 2), as well as the histo-
grams of Figs. 3, 4, and 5 is that for smai] avalanching
breakdowns fragment the network to a state from which it
never recovers. For preferential attachment the newly frag- This paper deals mainly with the case where the average
mented network contains a single largest cluster with a weluser of a growing communication network communicates
defined size, and the emergent scale-free degree distributianith a number of others that increases linearly withOne
beforety. is replaced by an exponential distribution. The can also imagine a case where, even though the network
breakdown for the random attachment case turns out to bgrows, the user on an average communicates with a network
less violent, and does not cause any major structural changsize independent of the number of others; which is the topic
Furthermore, the difference between the random and prefeof the present appendidn Ref.[8] this scenario was termed
ential attachment cases is larger for edge breakdown than féintrinsic communication activity.) The behavior of real
the corresponding vertex breakdown model studied in Refcommunication networks lies, presumably, between these
[8]. two extremes.

APPENDIX: INTRINSIC COMMUNICATION ACTIVITY
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1. Definitions 20 o r - = - ~ 1000
To implement the situation of intrinsic communication ac- PAmi= = o5 “n‘ﬂ s
tivity, we modify Eq.(4) to ol ,_”u" | S
’ . ’ a . IHI b ///
Q' ={A:|A|=A'N}, Ay o | @ . o |
- P
whereA' is constant with respect tid, i.e., the user has the 5 y "-1 4 50
N-independent average numbAr of established contacts W J

through shortest routes. Averaging the load oféraccord-

) . 100 500 10|00 5000 100 500 10|00 5000
ing to Eq.(3) gives t t
0.02 ‘\; = . ' ' 50
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From this we see that having a constant capacity for the loac Y o
\(e) corresponds to having a limit oGg(e) that increases 0005 % S+ %
with N. Thus we viewe as overloaded ifCg(e) exceeds N7
Cgax: NCgaX (Wherecgax is constant 100 500 110'00 5000 100 500 t10'00 5000
2. Results FIG. 6. The time evolution 08 (a), L (b), | ~* (c), andn (d) for

In the vertex overload breakdown oroblem. the case 0ﬁ1 typical run in the intrinsic communication activity case. The
vertex ov wn pr ' S odel parameters aref®=0.1 andmy/2=m=5. Dashed lines

intrinsic communication activity has a more complex dynam—reloresent the network grown with preferential attachm@),

ICS than, the extrinsic Comml_m'ca,t'on activity castudied '_n solid gray lines denote curves for the runs with an unbiased random
the main part of the text with giant components forming  4tachmentRA).

only occasionally for some sets of parameter vali#dsFor

edge overload breakdown, on the other hand, the dynamics N

of a system with intrinsic communication activity seems very (CB(e)>~m( —— 1) lcssmaxCg(e). (A4)
simple with no avalanching breakdowns and no qualitative n veV

difference between preferential and random attachment, see
Fig. 6. We can also notice that the measured quantities haJ& On€ assumes tha{Cg(e))>max,.,Cg(€) and N>n we

a power-law dependence of(Figure 6 is constructed from have <_|f135>‘_xn' Making the crude approximatiorl

one run with random and preferential attachment, respec={lce’ = gives @j-1~—ay,, which holds well for smalt.
tively.) For large times (1008t=5000) the exponent for Astincreases the spregd in shziqe of the ponr_1ected subgraphs
the time development of the respective quantityiisthe ~ Pecomes larger so te“~(Icg) " approximation becomes
larget limit): a;-1~—0.6, @, =1.0, andas=a,=0.50 for ~ WOrse which is seen as a slight increase in the slepe.

both (2) and (b). Initially «,-1 is closer to zero, for 108t  1hat the approximatiom, -1~ — a,, is rather good through-
<1000 we havey, -1~ —0.5. To illustrate the consistency of out the range of is also refllected in that the average size of
the exponents we note that connected components/n is never very far fromS. At t

=5000 we havégsee Fig. 6a)] N/n~50 andS=57 for ran-
N/N dom attachment, antl/n~53 and S=56 for preferential
egE CB(e):Ug\/ WE%{U} d(U-W):nﬁ(ﬁ_j-)('cs% attachment. In this approximation we see thahxN*? so
(A3) the small average geodesic length is lost within the con-
nected subgraphs. #}* is chosen as being larger, the net-
where(lcg) is the average geodesic length for a connectedvork initially grows without edges being broken and there
subgraph, and(v,w)=0 if v andw are disconnected. This are no large avalanches but a crossover to the behavior as

yields seen in Fig. 6.

[1] R. Albert, H. Jeong, and A.-L. BarasiaNature(London 401, Vazquez, and A. Vespignani, Phys. Rev. Le8, 258701
130(1999. (20019).

[2] M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. Com-[3] D.J. Watts and S.H. Strogatz, Natufeondon 393 440
mun. Rev.29, 251 (1999; R. Kumar, P. Rajalopagan, C. Di- (1998; D. J. Watts,Small Worlds(Princeton University Press,
vakumar, A. Tomkins, and E. Upfal, Rroceedings of the 19th Princeton, NJ, 1999
Symposium on Principles of Database SystéAssociation [4] L.A.N. Amaral, A. Scala, M. Bartiémy, and H.E. Stanley,
for Computing Machinery, New York, 1999A. Broderet al, Proc. Natl. Acad. Sci. U.S.A7, 11 149(2000; O. Sporns, G.
Comput. Netw. 33, 309 (2000; R. Pastor-Santorras, R.A. Todoni, and G.M. Edelman, Cereb. Cort&® 127 (2000.

036119-6



EDGE OVERLOAD BREAKDOWN IN EVOLVING NETWORKS PHYSICAL REVIEW E66, 036119 (2002

[5] H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.-L. Bara- [18] A centrality measure reflecting the flow in a system with load

basi, Nature(London 407, 651(2000; D.A. Fell and A. Wag- balancing is the “flow betweenness:” L.C. Freeman, S.P. Bor-
ner, Nat. Biotechnol18, 1121(2000; H. Jeong, S.P. Mason, gatti, and D.R. White, Soc. Networks3, 141 (1991). The
A.-L. Barabai, and Z.N. Oltvai, NaturgLondon 411, 42 outcome of the present study with betweenness replaced by
(2001D. flow betweenness is an interesting open question.

[6] M.E.J. Newman, Phys. Rev. &, 016131(2001); 64, 016132  [19] Nevertheless, choosing the shortest routes is the first principle
(2002; F. Liljieros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, of some real Internet routing protocols such as the open short-
and VY. Aberg, NaturgLondon 411, 907 (2001). est path firsf OSPH protocol. J. T. Moy,OSPF: Anatomy of

[7] S.H. Strogatz, Naturd_ondon 410, 268 (2002). an Internet Routing ProtoclAddison-Wesley, Reading, MA,

[8] P. Holme and B.J. Kim, Phys. Rev. &, 066109(2002. 1998.

[9] A.-L. Barabai and R. Albert, Scienc286, 509 (1999. [20] C. Huitema,Routing in the Internet2nd ed.(Prentice-Hall,

[10] A.-L. Barabai, R. Albert, and H. Jeong, Physica2¥2, 173 Upper Saddle River, NJ, 20D0
(1999. [21] To calculate the betweenness centrality we use the algorithm
[11] J. M. Anthonisse, Stichting Mathematisch Centrum Report No. presented in U. Brandes, J. Math. Socizb, 163 (2001. An
BN 9/71, 1971(unpublishegt M.L. Freeman, Sociometr}O, equally efficient algorithm was proposed in M.E.J. Newman,
35 (1977. Phys. Rev. B64, 016132(2001).
[12] D.J. Watts, Proc. Natl. Acad. Sci. U.S.89, 5766(2002. [22] M.E.J. Newman and D.J. Watts, Phys. Let283 341(1999;
[13] Y. Moreno, J.B. Gmez, and A.F. Pacheco, Europhys. L&8, Phys. Rev. B60, 7332(1999; C. Moore and M.E.J. Newman,
630 (2002. ibid. 61, 5678(2000; C. Moore and M.E.J. Newmaihid. 62,
[14] R. Albert and A.-L. Barabsi, Phys. Rev. Leti85, 5234(2000). 7059 (2000; R. Albert, H. Jeong, and A.-L. Barasia Nature
[15] S. Mossa, M. Barthiémy, H.E. Stanley, and L.A.N. Amaral, (London 406, 378(2000; M. Ozana, Europhys. Letg5, 762
Phys. Rev. Lett88, 138701(2002. (2002); P. Holme, B.J. Kim, C.N. Yoon, and S.K. Han, Phys.
[16] M. Girvan and M.E.J. Newman, Proc. Natl. Acad. Sci. U.S.A. Rev. E65, 056109(2002.
99, 7821(2002. [23] M.E.J. Newman, J. Stat. Phy%01, 819 (2000.
[17] K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Le87, 278701  [24] M. Kihl, Overload Control Strategies for Distributed Commu-
(2001. nication NetworkgLund University Press, Lund, 1989

036119-7



