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Edge overload breakdown in evolving networks

Petter Holme*
Department of Theoretical Physics, Umea˚ University, 901 87 Umea˚, Sweden

~Received 8 April 2002; revised manuscript received 3 July 2002; published 19 September 2002!

We investigate growing networks based on Baraba´si and Albert’s algorithm for generating scale-free net-
works, but with edges sensitive to overload breakdown. The load is defined through edge betweenness cen-
trality. We focus on the situation where the average number of connections per vertex is, like the number of
vertices, linearly increasing in time. After an initial stage of growth, the network undergoes avalanching
breakdowns to a fragmented state from which it never recovers. This breakdown is much less violent if the
growth is by random rather than by preferential attachment~as defines the Baraba´si and Albert model!. We
briefly discuss the case where the average number of connections per vertex is constant. In this case no
breakdown avalanches occur. Implications to the growth of real-world communication networks are discussed.
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I. INTRODUCTION

Large sparse networks are the underlying structure
transportation or communication systems, both man m
~like computer networks@1,2# or power grids@3#! or natural
~like neural networks@4# or biochemical networks@5#!.
These networks display both randomness and some
induced structure influencing the flow of transport and
bustness against congestion or breakdown in the netw
The most well-studied such structure among real-world co
munication networks is a highly skewed distribution of t
degree~the number of neighbors of a vertex! @1,2,6#.

Avalanching breakdown in networks where the edges
vertices are sensitive to overload is a serious threat to r
world networks. A recent example being the blackout of
US states and two Canadian provinces on 10th August 1
@7#. Recently the overload breakdown problem for vertices
growing networks with an emerging power-law degree d
tribution has been studied@8#. In the present paper we inves
tigate the overload breakdown problem when edges~rather
than vertices! are sensitive to overloading. We use the sta
dard model for such networks—the Baraba´si-Albert ~BA!
model@9,10#, but with a maximum load capacity assigned
each edge. The load is defined by means of the between
centrality—a centrality measure for communication a
transport flow in a network@11#. The procedure enables us
study overload breakdown triggered by the redistribut
~and increase! of load in a growing network. This is in con
trast to earlier models of cascading breakdown phenom
all dealing with vertex breakdown, which have taken a fix
network as their starting point@12,13#.

II. DEFINITIONS

We represent networks as undirected and unweigh
graphsG5(V,E), whereV is the set of vertices, andE is the
set of unweighted edges~unordered pairs of vertices!. Mul-
tiple edges between the same pair of vertices are not allow
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A. The Barabási-Albert model of scale-free networks

The standard model for evolving networks with an eme
ing power-law degree distribution is the Baraba´si-Albert
model. In this model, starting fromm0 vertices and no edges
one vertex withm edges is attached iteratively. The cruci
ingredient is a biased selection of what vertex to attach
the so called ‘‘preferential attachment:’’ In the process
adding edges, the probabilityPu for a new vertexv to be
attached tou is given by@14#

Pu5
ku11

(
wPV

~kw11!

, ~1!

where ku is the degree of the vertexu. To understand the
effect of preferential attachment, we will also investigate n
works grown with an unbiased random attachment of ve
ces. Without the preferential attachment the networks
known to have an exponential tail of the degree distribut
@10#. The time t is measured as the total number of add
edges, which is different by factorm from Refs.@9,10# where
t is defined as the number of added vertices.

It should be noted that in very large communication n
works, such as the Internet, the users can process informa
about only a subset of the whole network. How this affe
the dynamics of network formation is investigated in R
@15#. In the present work we neglect such effects and assu
linear preferential attachment.

B. Load and capacity

To assess the load on the vertices of a communica
network, or any network where contact between two verti
is established through a path in the network, a comm
choice is the betweenness centrality@11#, which often is seen
as a vertex quantity but has a natural extension to edgee
PE @16#:

CB~e!5 (
vPV

(
wPV\$v%

svw~e!

svw
, ~2!
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wheresvw(e) is the number of geodesics betweenv andw
that containse, and svw is the total number of geodesic
betweenv and w. CB(e) is thus the number of geodesic
between pairs of vertices passinge; if more than one geode
sics exists betweenv andw the fraction of vertices contain
ing e contributes toe’s betweenness@21#.

In Ref. @8# ~see also Ref.@17#! the use of betweennes
centrality as a load measure is given thorough motivatio
These arguments are readily generalized to the case of e
sensitive to overloading: Suppose thatL is the set of pairs of
vertices with established communications through shor
paths at a given instant@18#. Then letl(e) denote the load of
ePE defined as the number of geodesics that containe.
Then we assume the effective load to be the average

^l~e!&V5
1

uVu (
LPV

l~e!, ~3!

where V is an ensemble ofL. To proceed, we restrictV
according to

V5$L:uLu5AN~N21!%, ~4!

whereA is constant with respect toN. This is to be inter-
preted that an element ofV is a set ofAN(N21) pairs of
distinct vertices chosen uniformly at random, and thus c
responds to the case where the number of established
munication routes ending at a specific vertex in average
creases withN. This case can, for example, be expected
the early days of the Internet where the launches of new s
made the users browse a larger average number of sites
case where the user on an average connects to
N-independent number of others is discussed in the App
dix. The largest approximation, when using the betweenn
as a load measure, is probably that routing protocols of, e
the Internet has implicitly implemented load balanci
@18–20#.

To introduce overloading to the dynamics we assign
capacity, or maximum valuelmax(e) to the load, doing the
same for each edge, and say that the edgee is overloaded if
lmax(e),^l(e)&V . From the definition ofV we can see tha
our situation corresponds to having a maximum capacity
the betweenness centrality of the edges so that an edg
overloaded ifCB(e).CB

max ~whereCB
max is constant!. If an

edge is overloaded it is simply removed from the graph, a
the betweenness recalculated. Then if another edge bec
overloaded it is removed, and so on. If more than one edg
overloaded at a time, we choose the one to be removed
domly. Multiple breakdowns during one time step define
‘‘breakdown avalanche’’.

C. Quantities for measuring network functionality

To measure the network functionality we consider th
quantities—the number of edgesL, inverse geodesic lengt
l 21, and the size of the largest connected subgraphS. For the
original BA model the number of edges increases linearly
L(t)5t ~i.e., one edge is added in unit time!. But if an over-
load breakdown occurs in the system,L decreases, making i
a suitable, simplest possible measure of the network fu
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tionality. In a functional network a large portion of the ve
tices should have the possibility to connect to each other
percolation and attack vulnerability studies of random n
works one often usesS to define the system as ‘‘percolated
~or functioning!, when the size of the largest connected su
graphSscales asN @1,22#. One of the characteristic feature
of the BA model networks, as well as many real-world co
munication networks, is a less than algebraically increas
average geodesic lengthl. As the average geodesic length
infinite when the network is disconnected~as could be the
case when an overload breakdown has occurred! we study
the average inverse geodesic length@23#:

l 21[ K 1

d~v,w!L [
1

N~N21! (
vPV

(
wPV\$v%

1

d~v,w!
, ~5!

which has a finite value even for the disconnected grap
one defines 1/d(v,w)[0 in the case that no path connectsv
andw. To monitor the fragmentation of the network we w
also measure the number of connected subgraphsn.

III. SIMULATION RESULTS

For relatively smallm, typical runs are exemplified in Fig
1. For both random and preferential attachment,^S& reaches
a critical time whereafter the network starts to break do
and it eventuallŷ S& reaches a steady state value. The bre
down develops differently in the two cases: For the rand
attachment the breakdown is relatively slow and the ste
state value is high compared to the preferential attachm
case where large successive avalanches fragment the
work. The other two quantities reflect the same behav
While the initial vertices get joined into the network,l 21

increases to an early maximum. After the decrease co
sponding to the increase ofl, l 21 decreases rapidly when th
network becomes fragmented.L shows the jagged shape, a
expected, correlated with that of^S&. As seen in Figs. 1~a!
and 1~b!, the discontinuity inL ~in the preferential attach
ment case!, is less pronounced than that in^S&, so a small
number of overloaded edges can be enough to cause a
decrease in̂S&. The reason for this behavior is that bridg
~single edges interconnecting connected subgraphs! have a
high betweenness and thus are prone to overloading.
number of connected subgraphs behave qualitatively in
same way for random and preferential attachment. For o
runs of the algorithm the breakdown can qualitatively
described as above. The averaged quantities vary relati
little, for example the peak time for̂S& has a standard de
viation of ;3%.

The corresponding overload case for vertices studied
Ref. @8# shows a similar time development with a period
incipient scale-freeness, an intermediate regime of bre
down and recovery~although the period of recovery is not a
large for edges as for vertices!, and a final breakdown to a
large-t state of disconnected clusters. One major differen
between overload breakdown for vertices and edges is
the difference between random and preferential attachme
larger for edge overloading—edge robustness benefits m
9-2
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FIG. 1. The time evolution of
S~a!, L ~b!, l 21 ~c!, andn ~d! for a
typical run with CB

max5500 and
m0/25m54. Dashed lines repre
sent the network grown with pref
erential attachment~PA!, solid
gray lines denote curves for th
runs with an unbiased random a
tachment~RA!.
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than vertex robustness from the geometry arising from r
dom attachment.

Next we investigate them dependence. As seen in Fig.
the system becomes more and more robust whenm increases.
This is of course expected since with a higher average de
more edges share the load, so the maximal load can be
pected to decrease. For high enoughm there are no ava
03611
-

ee
x-

lanches, the largest connected component remains of
same sizeS5CB

max11. WhenS5CB
max11 the next edge at-

taching a new vertex will haveCB(e)5CB
max11, and thus be

overloaded. In most cases this will lead to removal of t
newly added edge—otherwise another edge has to be o
loaded at the same time, which is decreasingly likely w
increasingm. In Fig. 2~b! we can see one exception to th
FIG. 2. Them dependence of the time development of^S&—the average size of the largest connected subgraph withCB
max5500 and

m052m, for ~a! random attachment and~b! preferential attachment.
9-3



st
a

-
-
ila
th

a

op
n
e

n
rv
en

t

pe

-
e

and

that
l
.

-
op,

ness
s-

the
e of
s at
ak

with

t

es
t

nt,

PETTER HOLME PHYSICAL REVIEW E66, 036119 ~2002!
interpretation atm56. Here^S& reachesCB
max11 but starts

to decay slowly at aroundt58000. As mentioned, the large
connected subgraph is expected to become more stablem
increases. Whether there is anm above which^S&5CB

max

11 for arbitrarily larget, above somet0, is an open ques
tion. Comparing Figs. 2~a! and 2~b! shows that random at
tachment and preferential attachment have sim
m-dependence behavior—the major difference being
preferential attachment has a much sharper increase of^S&;
to be more precise them values that does not reachS
5CB

max11 for any t, have a lower value in the large-t limit.
To get another angle of the mechanisms of the bre

downs for smallm, we consider histograms of degreekv and
betweennessCB(e). Figures 3 and 4 show these histogram
both before and after the large drop in^S& for m5m0/254
and CB

max5500. ~In the random attachment case this dr
occurs attdrop'1600, the corresponding value for prefere
tial attachment istdrop'2000.! For random attachment th
difference between the histograms before and after the^S&
drop is distinctively smaller than for preferential attachme
just as expected from Fig. 2. The random attachment cu
in Fig. 3~a! have a degree distribution of truncated expon
tial form both at the earlier and later times. In Fig. 3~a! it is
exponential over two decades ofP(kv), but falls off faster
than exponentially for higherkv . For preferential attachmen
the degree distributions@Fig. 3~b!# have a distinct
difference—att,tdrop there is an emergent power-law sha

FIG. 3. Histograms~averaged over 104 runs! of degree. The
parameter values arem5m0/254 andCB

max5500. ~a! shows histo-
grams for random attachment,~b! shows histograms for random
attachment. The gray line in~b! is the function 38kv

23 illustrating
the emerging power-law degree distribution at early times.
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of theP(kv) curve, whereas att.tdrop the shape is exponen
tial, ; exp(20.62kv), over five decades. To summarize, th
degree distributions before and after the^S& peak illustrate
the same behavior as the time evolution of^S&—the break-
down in the preferential attachment case is both faster
more restructuring than in the random attachment case.

The betweenness distributions of Fig. 4 show a peak
moves to higherCB , ast grows, until it reaches its maxima
value at the time of the drop in̂S& and starts to decrease
For random attachment@Fig. 4~a!# the shape of the distribu
tion looks qualitatively the same before and after the dr
but for preferential attachment@Fig. 4~b!# P(CB)'0 for be-
tweenness smaller than the peak. The vertex between
distribution of the BA model is known to be strictly decrea
ing @17#, which would imply that the low-CB tails in Fig. 4
~b! @and most likely in Fig. 4~a! as well# come from a spread
of the size of the largest cluster, rather than from a tail in
largest cluster’s betweenness distribution. Another featur
the betweenness histograms of Fig. 4 is the smaller peak
low CB for t,tdrop. These peaks correspond to a sharp pe
of the cluster size distribution just after the^S&-peak ~see
Fig. 5!. Such smaller clusters have small average degree
manykv51 vertices, which all contributes to a peak ats of
the betweenness histograms. This explains the peak aCB
'45 in thet55000 curve of Fig. 4~b!.

The distribution of cluster sizes displayed in Fig. 5 giv
some further insights: Fort.tdrop of the random attachmen

FIG. 4. Histograms~averaged over 104 runs! of edge between-
ness centrality. The parameter values are—as in Fig. 3—m5m0/2
54 andCB

max5500. ~a! shows histograms for random attachme
~b! shows histograms for preferential attachment.
9-4
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EDGE OVERLOAD BREAKDOWN IN EVOLVING NETWORKS PHYSICAL REVIEW E66, 036119 ~2002!
curves it shows a bimodal distribution asP(s) is zero in the
interval 60&s&290. The preferential attachment curves,
contrast, have a long tail. Both the larges peak for random
attachment and the tail of preferential attachment co
sponds to one single cluster. This is in striking contrast to
vertex overload case@8# where the network looses the uniqu
largest component after the breakdown avalanches. At
evolves well beyondtdrop the largest component peak d
creases, and thus does not represent a giant compone~a
largest cluster proportional toN). The picture for both ran-
dom and preferential attachment is thus that the system
not loose its unique largest cluster in a single breakdo
avalanche—an avalanche rather results in a few isolated
tices or smaller clusters getting disconnected from the lar
connected component.

The overall picture of the time evolution of^S&, L, and
l 21 ~Fig. 1!, them dependence~Fig. 2!, as well as the histo-
grams of Figs. 3, 4, and 5 is that for smallm, avalanching
breakdowns fragment the network to a state from which
never recovers. For preferential attachment the newly fr
mented network contains a single largest cluster with a w
defined size, and the emergent scale-free degree distribu
before tdrop is replaced by an exponential distribution. Th
breakdown for the random attachment case turns out to
less violent, and does not cause any major structural cha
Furthermore, the difference between the random and pre
ential attachment cases is larger for edge breakdown tha
the corresponding vertex breakdown model studied in R
@8#.

FIG. 5. The distribution of sizes of connected clusters at diff
ent times form5m0/254, CB

max5500, and~a! random attachment
~b! preferential attachment. All curves represent averages over4

runs. To overcome noise thet>2000 histograms are binned fors
>75, each point being an average over a width of 10.
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IV. SUMMARY AND CONCLUSIONS

We have studied networks grown by the Baraba´si-Albert
model for networks with emergent scale-freeness and ed
sensitive to overloading. Except for the preferential atta
ment defining the BA model, we also study an unbiased r
dom attachment. We focus on the case where the numbe
established connections to other random vertices of the
work scales linearly with the number of vertices in the n
work.

We find that for intermediate values ofm ~the number of
edges added per vertex! the network grows like the BA
model up to a point where it starts to break down. After
number of avalanching breakdowns the network reache
state characterized by many disconnected clusters f
which a giant component never reemerges~although, in the
preferential attachment case, there will always be one sin
largest cluster much larger than any other!. If the growth is
by random attachment, the breakdown is less violent w
smaller avalanches and no pronounced structural change
largem the steady state at large times is characterized b
constant largest cluster size.

In context of real-world communication networks one c
conclude that these would benefit from being grown by r
dom rather than by preferential attachment~and this differ-
ence being larger for edge overload than for vertex overl
studied in Ref.@8#!. In the vertex overload case avalanch
proceed until the network is fragmented into small cluste
in the edge overload problem there is still one large com
nent after the breakdowns, thus we infer that for real-wo
communication networks, vertex overloading is a grea
threat than edge overloading, and congestion control in t
communication networks@24# and Internet routing protocols
@20# should focus on balancing the vertex rather than e
load. Only if the capacity of vertices~servers, etc.! grows
significantly faster than the capacity for edges~cables, etc.!,
the edge overload breakdown becomes a potential threa
avalanching breakdowns that is triggered by the change
load in a growing network.
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APPENDIX: INTRINSIC COMMUNICATION ACTIVITY

This paper deals mainly with the case where the aver
user of a growing communication network communica
with a number of others that increases linearly withN. One
can also imagine a case where, even though the netw
grows, the user on an average communicates with a netw
size independent of the number of others; which is the to
of the present appendix.~In Ref. @8# this scenario was terme
‘‘intrinsic communication activity.’’! The behavior of real
communication networks lies, presumably, between th
two extremes.
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1. Definitions

To implement the situation of intrinsic communication a
tivity, we modify Eq. ~4! to

V85$L:uLu5A8N%, ~A1!

whereA8 is constant with respect toN, i.e., the user has th
N-independent average numberA8 of established contact
through shortest routes. Averaging the load overV8 accord-
ing to Eq.~3! gives

^l~e!&V85
1

uV8u
(

LPV8
(

(w,w8)PL

sw w8~e!

sw w8

5
A8

N
CB~e!.

~A2!

From this we see that having a constant capacity for the l
l(e) corresponds to having a limit onCB(e) that increases
with N. Thus we viewe as overloaded ifCB(e) exceeds
CB

max5NcB
max ~wherecB

max is constant!.

2. Results

In the vertex overload breakdown problem, the case
intrinsic communication activity has a more complex dyna
ics than the extrinsic communication activity case~studied in
the main part of the text!, with giant components forming
only occasionally for some sets of parameter values@8#. For
edge overload breakdown, on the other hand, the dynam
of a system with intrinsic communication activity seems ve
simple with no avalanching breakdowns and no qualitat
difference between preferential and random attachment,
Fig. 6. We can also notice that the measured quantities h
a power-law dependence oft. ~Figure 6 is constructed from
one run with random and preferential attachment, resp
tively.! For large times (1000&t&5000) the exponenta for
the time development of the respective quantity is~in the
large t limit !: a l 21'20.6, aL51.0, andaS5an50.50 for
both ~a! and ~b!. Initially a l 21 is closer to zero, for 100&t
&1000 we havea l 21'20.5. To illustrate the consistency o
the exponents we note that

(
ePE

CB~e!5 (
vPV

(
wPV\$v%

d~v,w!5n
N

n S N

n
21D ^ l CS&,

~A3!

where^ l CS& is the average geodesic length for a connec
subgraph, andd(v,w)50 if v andw are disconnected. Thi
yields
om
-

.

03611
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^CB~e!&'mS N

n
21D l CS<max

vPV
CB~e!. ~A4!

If one assumes that̂CB(e)&}maxvPVCB(e) and N@n we
have ^ l CS&}n. Making the crude approximationl 21

'^ l CS&
21 gives a l 21'2an , which holds well for smallt.

As t increases the spread in shape of the connected subgr
becomes larger so thel 21'^ l CS&

21 approximation becomes
worse which is seen as a slight increase in the slopea l 21.
That the approximationa l 21'2an is rather good through-
out the range oft is also reflected in that the average size
connected componentsN/n is never very far fromS. At t
55000 we have@see Fig. 6~a!# N/n'50 andS557 for ran-
dom attachment, andN/n'53 and S556 for preferential
attachment. In this approximation we see thatl}n}N1/2 so
the small average geodesic length is lost within the c
nected subgraphs. IfcB

max is chosen as being larger, the ne
work initially grows without edges being broken and the
are no large avalanches but a crossover to the behavio
seen in Fig. 6.

FIG. 6. The time evolution ofS ~a!, L ~b!, l 21 ~c!, andn ~d! for
a typical run in the intrinsic communication activity case. T
model parameters arecB

max50.1 andm0/25m55. Dashed lines
represent the network grown with preferential attachment~PA!,
solid gray lines denote curves for the runs with an unbiased ran
attachment~RA!.
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